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Abstract: Melatonin, an endogenous hormone mainly released at night by the pineal gland, has
multifaceted biofunctions. Emerging evidence points to melatonin having a crucial role in kidney
health and disease. As the prevalence of chronic kidney disease (CKD) is still rising, a superior
strategy to advance global kidney health is needed to not just treat CKD, but prevent it early on.
Adult kidney disease can have its origins in early life. This review aims to evaluate the recent literature
regarding melatonin’s effect on kidney development, its clinical uses in the early stage of life, animal
models documenting preventive applications of melatonin on offspring’s kidney-related disease, and
a thorough summary of therapeutic considerations concerning melatonin supplementation.

Keywords: antioxidant; circadian rhythm; developmental origin of health and disease (DOHaD);
melatonin; developmental programming; kidney disease; pregnancy

1. Introduction

Melatonin is a pleiotropic hormone mainly secreted at night by the pineal gland, which
regulates the circadian rhythm [1]. In addition to its chronobiotic action, melatonin has
antioxidant, anti-inflammatory, anti-carcinogenic, anti-apoptotic, anti-hypertensive and
immunoregulatory properties [2–5]. Melatonin has a crucial role in human health and
disease across the life span. Melatonin appears to be involved in normal pregnancy and fetal
development [6,7]. The physiological effects of melatonin are various, and include multi-
organ targets [2–5]. As a result, accumulating evidence supports the idea that melatonin
holds promise in the treatment of various diseases, not only in adults but also in children
and neonates [8–11].

Chronic kidney disease (CKD) is the main cause of death and disease worldwide [12];
it currently affects about 10% of the world’s population. Adult kidney disease can originate
in early life, known as “Developmental Origin of Health and Disease” (DOHaD) [13].
Recent advances in human and animal studies have offered ample evidence that adverse
environmental stimuli during kidney development increases the risk of CKD in adulthood
via renal programming [14,15]. On the other hand, kidney disease can be averted in the
early stage of life by reprogramming [16]. This vision suggests that the utmost attention
is obligatory for global kidney health strategy, principally emphasizing the prevention of
CKD at the earliest stage of life, not simply the treatment of established kidney disease [17].

Although multiple positive actions of melatonin have been described, there is little
known about the influence of melatonin on kidney health. This review, therefore, highlights
the impact of melatonin on kidney development and opens important perspectives for the
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use of melatonin in preventive and therapeutic applications in kidney-related diseases later
in life (Figure 1).
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Figure 1. Schematic diagram highlighting the impact of melatonin in normal pregnancy and kidney
development. Additionally, the use of melatonin in early life can protect against renal programming-
induced adulthood kidney diseases later in life.

A literature review was carried out by searching the databases Embase, MEDLINE,
and Cochrane Library using keywords relevant to melatonin, circadian rhythm, pregnancy,
lactation, kidney disease, developmental programming, and DOHaD. A specific focus was
put on the use of melatonin during pregnancy, infant, and childhood stages. The reference
lists of articles were also examined to identify any additional references that would be
related to this review.

2. Effects of Melatonin
2.1. Synthesis, Metabolism, and Action of Melatonin

Melatonin, or 5 methoxy-N-acetyltryptamine, was isolated from the bovine pineal
gland and discovered nearly 60 years ago [18]. Melatonin is largely synthesized by the
pinealocytes from tryptophan through hydroxylation, decarboxylation, acetylation, and
methylation [19]. Melatonin synthesis and secretion is enhanced by darkness and inhibited
by light [19]. Once secreted from the pineal gland, melatonin is quickly released into
the systemic circulation to reach peripheral target tissues. Other than the pineal gland,
many organs can produce melatonin, including the gastrointestinal tract, skin, retina, and
bone marrow [20–23]. Take skin, for example; intracutaneous melatonin metabolites can
form a potent anti-oxidative cascade through rapid local metabolism in an MT receptor-
independent manner [23]. Therefore, endogenous melatonin production in skin may
represent an anti-oxidative system to neutralize pathological changes such as skin aging
and cancerogenesis [23].

The half-life of melatonin has been calculated to be around 30–60 min [24]. In the
circulation, 70% of melatonin is bound to albumin, while the remaining 30% diffuses to
neighboring tissues [4]. Melatonin is mostly metabolized in the liver and kidneys by P450
monooxygenases, and its main urinary metabolite is 6-sulfatoxymelatonin [25]. Only a
small percentage (<5%) of blood melatonin is unmetabolized and excreted into the urine.
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Melatonin acts through melatonin receptor-1 (MT1) and -2 (MT2), which are G protein-
coupled receptors [4]. Melatonin receptors are widely distributed in the body, including
the kidney [26]. In the kidneys, MT1 and MT2 receptors are predominately expressed in
the kidney membrane area and basolateral membranes [26]. Both melatonin receptors
have been shown to activate several signaling pathways, such as the ERK1/2 and the
PI3K/AKT pathways [27,28]. Although melatonin regulates circadian rhythms via MT1
and MT2 receptors, the underlying mechanisms are not yet entirely understood and may
differ between various tissues [29].

Additionally, the nuclear receptor retinoid acid receptor (ROR) has been suggested
to mediate the genomic actions of melatonin [4]. However, recent work revealed that
melatonin indirectly rather than directly regulates ROR activity [30]. Additionally, crystallo-
graphic evidence does not support the view that ROR is a nuclear receptor of melatonin [31].
Thus, whether ROR is a nuclear receptor of melatonin remains controversial [30]. Moreover,
melatonin has receptor-independent effects. For example, melatonin-derived metabolites
N1-acetyl-5-methoxykynuramine and N1-acetyl-N2-formyl-5-methoxykynuramine can act
as powerful antioxidants [25]. Some melatonin actions could be secondary to its rapid
metabolism to different metabolites [2,20].

While the physiologic functions of melatonin have been documented in multiple organ
systems, its effects on the kidney are less well recognized. The peripheral circadian clock
within the kidneys participates in various physiological functions, including glomerular
filtration, tubulo-glomerular feedback mechanisms, the urine concentrating mechanism,
circadian blood pressure (BP) rhythm, and the regulation of sodium transport [32]. Renal
function is known to vary diurnally in healthy individuals. A previous study demonstrated
that the daytime administration of melatonin to hamsters decreased urinary sodium and
potassium concentrations as well as urine osmolality [33]. Since the rhythms of melatonin
provide synchronization signals for peripheral clocks, dysregulated circadian rhythm
and melatonin signaling may be related to kidney-related diseases [34]. These findings
suggest that melatonin possibly impacts renal function by regulating proximal tubular
function. Additional research is required to clarify the biochemical and physiologic details
of melatonin in the kidneys so as to harness its therapeutic potential for kidney diseases.

2.2. Melatonin in Gestation and Fetal Development

Pregnant women have higher nighttime blood melatonin concentrations than non-
pregnant women throughout gestation, reaching the highest level at term and falling to the
basal level postpartum [35]. As shown in Figure 1, maternal melatonin is able to transfer
across the placenta to the fetus, providing photoperiodic information to the fetus [36,37].
In addition to the pineal gland, the placenta can also secrete melatonin [38]. The difference
is that the placenta does not produce melatonin in a circadian fashion, and it acts as a
paracrine, autocrine, and endocrine hormone [38]. In the placenta, villous trophoblasts do
not merely produce melatonin, but express melatonin receptors as well [38]. Melatonin
in the placenta is able to work together with the MT1 and MT2 receptors to scavenge free
radicals, consequently reducing oxidative damage in compromised pregnancies [39].

Melatonin receptors are widespread in the fetus from the early stages. In rodents,
melatonin-binding sites in the pituitary gland are present in 15-day-old fetuses [40]. In the
fetal human brain, melatonin receptors exist in many areas [41]. These data suggest that
maternal melatonin has a role in the early stages of fetal development. Prior work revealed
that a disrupted maternal and embryonic molecular clock impaired organogenesis in the
fetus [42]. Another study showed that maternal melatonin deficiency caused circadian
rhythm disruption and intrauterine growth retardation (IUGR) in adult rat offspring, which
was prevented by maternal melatonin treatment [43]. The findings above support the fact
that maternal melatonin is closely linked to fetal development as well as organogenesis.
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3. Impact of Melatonin on Kidney Development
3.1. Kidney Development

Human kidney development begins as early as week three, followed by metanephros
at five weeks of gestation [44]. Nephrogenesis is initiated when reciprocal interactions
between the ureteric bud (UB) and the metanephric mesenchyme (MM) form the UB-
derived collecting system and MM-derived nephron. The nephron is the basic structural
and functional unit of the kidney [45]. It is composed of the glomerulus and the renal
tubule. In humans, the first nephron is formed at nine weeks of gestation. A rapid increase
in nephrons occurs from 18 to 32 weeks, and nephrogenesis is complete by 36 weeks of
gestation. As nephrogenesis is not completed by preterm birth, nephron under-endowment
is prone to be present in premature infants.

Apart from reduced nephron number, impaired nephrogenesis might cause a broad
spectrum of malformed kidneys, namely congenital anomalies of the kidney and urinary
tract (CAKUT) [46]. It is known that CAKUT is the major cause of pediatric CKD [46]. A
low nephron number induces glomerular hyperfiltration and compensatory glomerular
hypertrophy, thereby resulting in a vicious cycle of further nephron loss [45].

A previous study demonstrated that either global or local fetal clock disruption results
in phenotypic defects that mimic CAKUT [47]. Our former work indicates that there are
some common molecular mechanisms behind programming processes in various animal
models [48].

3.2. Effects of Maternal Melatonin on Offspring Kidney

Maternal melatonin deficiency induces offspring hypertension, a common comorbid-
ity of CKD [49]. There are several ways to induce maternal chronodisruption, including
constant light exposure, diurnal light deficiency, continuous darkness, and photoperiod
shifts [50]. One study showed that photoperiod shifts during pregnancy adversely pro-
gram not only BP but also kidney function in adult rat offspring [51]. Another report
demonstrated that the exposure of the mother rats to continuous light during pregnancy
and lactation caused offspring hypertension [50]. Continuous light exposure alters several
kidney genes responsible for high BP [52].

Using whole-genome RNA next-generation sequencing (NGS), we earlier analyzed
the renal transcriptome from male rat offspring born to dams that received melatonin
supplementation [53]. Melatonin (0.01% in drinking water) was administered during
pregnancy and lactation to cover the entire period of nephrogenesis. At 1, 12, and 16 weeks
of age, 455, 230, and 132 differentially expressed genes were identified in offspring’s
kidneys, respectively. It looks like alterations of transcriptome are induced by melatonin
declining over time.

In support of melatonin’s epigenetic actions [54], maternal melatonin therapy can
up-regulate several epigenetic regulators during kidney development [53]. Additionally,
numerous biological pathways are regulated by melatonin administration during nephro-
genesis [53]. Noteworthily, the tryptophan metabolism pathway is regulated by maternal
melatonin supplementation in 1-week-old offspring’s kidneys as melatonin is derived from
tryptophan. Several genes involved in the melatonin biosynthesis (i.e., Tph1, Ddc, and
Asmt) and MT receptors (i.e., Mtnr1b, Rora, and Rorb) were up-regulated, suggesting that
melatonin administration to mother rats can program metabolic and signaling pathways
of melatonin in their offspring’s kidneys [53]. The findings above indicate that maternal
melatonin administration is able to program the offspring’s kidney via the regulation of
specific genes and pathways.

4. Preventive and Therapeutic Benefits of Melatonin

Through its pleiotropic effects, melatonin may be efficacious in managing various
kidney-related diseases, such as hypertension [55], diabetes mellitus [56], acute kidney
injury [57], CKD [58], and kidney cancer [59]. Taking CKD as an example, the reno-
protective mechanisms of melatonin cover antioxidant, anti-apoptotic, anti-fibrotic, and
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anti-inflammatory effects [58]. Although plenty of preclinical studies have been conducted
in this regard, evidence is scarce in the clinical setting. In view of the recent advances in
DOHaD research, it has become evident that adulthood kidney-related diseases can be
averted in the earliest stage by reprogramming [16]. Here, as the scope of the current review,
we primarily focused on the use of melatonin from fetal to childhood stages as a therapeutic
strategy for kidney disease. For more in-depth information regarding adulthood kidney
disease, please refer to reviews published elsewhere.

4.1. Melatonin Use in Humans

Melatonin is a commonly used dietary supplement in the United States [60], while
it is a prescription-only drug in Canada, Japan, the European Union, and Australia. Oral
melatonin supplementation in humans has a favorable safety profile, with the usual daily
doses of melatonin being 2 to 10 mg in diverse populations [61].

However, little information is available regarding melatonin’s use and safety in preg-
nant or breastfeeding women on the basis of clinical trials. At present, pregnant and
lactating women are not recommended to use melatonin considering a lack of human
studies [61].

As reviewed elsewhere [10,11], the use of melatonin as a treatment option has been
evaluated in neonatal diseases, including hypoxic–ischemic injury, periventricular leukoma-
lacia, respiratory distress syndrome, bronchopulmonary dysplasia, and sepsis. In infants
and children, melatonin has also been widely used for purposes including sleep disorders
and seizure disorders, and also as an alternative sedative drug [10,11]. Nevertheless, no
information exists with regard to kidney disease within the pediatric population. Consid-
ering melatonin treatment gives useful results in adult kidney-related diseases, whether
melatonin is an effective therapy in pediatric kidney disease is worthy of further evaluation.

4.2. Melatonin Use for the Early Origins of Kidney Diseases in Animal Models

So far, there have been several animal studies reporting that melatonin exogenous
supplementation during gestation could be beneficial for both mother and fetus [62], while
only a small proportion of them have focused on offspring outcomes [55]. Here, we list in
Table 1 a summary of reports relevant to reprogramming effects of melatonin on kidney-
related diseases in offspring [63–78]. The therapeutic duration is restricted solely to fetal to
early childhood stages prior to disease onset.

Table 1. Renoprotective effects of melatonin use in early life protect against early origins of kidney-
related diseases in animal models.

Dose and Treatment
Period Animal Model Species/

Gender
Age at

Evaluation
Renoprotective Effects and

Mechanisms Ref.

Gestation

2 µg/mL in drinking
water from gestational

day 0 to 18

Gestational
chronodisruption SD rat/F 90 days Restored specific kidney

genes related to BP control [63]

10 mg/kg/day in
drinking water Genetic hypertension SHR/M 8 weeks Decreased the rise in BP [64]

Gestation and lactation

0.01% in drinking water Maternal continuous
light exposure SD rat/M 12 weeks Prevented hypertension and

restored the aberrant RAS [65]

0.01% in drinking water Maternal caloric restriction SD rat/M 12 weeks

Prevented hypertension,
reduced oxidative stress,

restored the aberrant RAS,
and increased renal NO

[66]

0.01% in drinking water Maternal L-NAME
exposure SD rat/M 12 weeks

Prevented hypertension,
reduced oxidative stress, and

increased renal NO
[67]



Int. J. Mol. Sci. 2023, 24, 8105 6 of 16

Table 1. Cont.

Dose and Treatment
Period Animal Model Species/

Gender
Age at

Evaluation
Renoprotective Effects and

Mechanisms Ref.

0.01% in drinking water Maternal high
methyl-donor diet SD rat/M 12 weeks

Attenuated hypertension,
reduced oxidative stress, and
altered renal transcriptome

[68]

0.01% in drinking water Maternal high-fructose diet SD rat/M 12 weeks

Prevented hypertension,
reduced oxidative stress,

restored the aberrant RAS,
and increased renal NO

[69]

0.01% in drinking water
Maternal high-fructose diet

plus post-weaning
high-salt diet

SD rat/M 12 weeks

Attenuated hypertension,
restored NO system, and

improved nutrient
sensing signals

[70]

0.01% in drinking water Prenatal dexamethasone
exposure SD rat/M 16 weeks

Prevented hypertension,
increased nephron number,

and reduced oxidative stress
[71]

0.01% in drinking water
Prenatal dexamethasone

exposure plus
post-weaning high-fat diet

SD rat/M 16 weeks Prevented hypertension and
restored the aberrant RAS [72]

20 µg/mL in drinking
water Genetic hypertension SHR/M 27 weeks Prevented the rise in BP [73]

Lactation

0.01% in drinking water Neonatal dexamethasone
exposure SD rat/M 16 weeks

Prevented hypertension and
preserved histone deacetylase

gene expression
[74]

0.01% in drinking water Neonatal dexamethasone
exposure SD rat/M 16 weeks

Prevented hypertension,
increased renal melatonin

level, and upregulated MT2
protein expression

[75]

Early childhood

10 mg/kg/day in
drinking water from 3 to

6 weeks of age
Adenine-induced CKD SD rat/M and F 9 weeks

Prevented hypertension,
attenuated kidney injury,

increased NO, and altered
gut microbiota

[76]

0.01% in drinking water
from 4 to 10 weeks of age

Genetic hypertension plus
L-NAME exposure SHR/M 10 weeks

Prevented hypertension,
reduced renal oxidative stress

and ADMA concentration
[77]

0.01% in drinking water
from 4 to 12 weeks of age Genetic hypertension SHR/M 12 weeks

Prevented hypertension,
reduced oxidative stress and
plasma ADMA concentration

[78]

L-NAME = NG-nitro-l-arginine methyl ester; CKD = chronic kidney disease; SD = Sprague Dawley rat; SHR =
spontaneously hypertensive rat; M = male; F = female; NO = nitric oxide; RAS = renin-angiotensin system; BP =
blood pressure; ADMA = asymmetric dimethylarginine; MT2 = melatonin receptor 2.

Although melatonin has been examined for developmental programming in several
species [79,80], the most studied species in this regard are rats. As revealed in Table 1,
reprogramming effects of melatonin treatment on rat offspring have been evaluated from
aged 8 to 27 weeks. As one rat month is the same as three human years [81], reported
renal effects can be translated to human stages from adolescents to young adults. As a
result, there remains a lack of information regarding the long-term effects of melatonin on
older adults.

Table 1 illustrates various maternal insults that can induce the developmental program-
ming of kidney-related disease in adult offspring, which can be averted by the early use of
melatonin. These early life insults include gestational chronodisruption [63], maternal con-
tinuous light exposure [65], maternal caloric restriction [66], maternal NG-nitro-L-arginine-
methyl ester (L-NAME) exposure [67], maternal high methyl-donor diet [68], maternal
high-fructose diet [69], maternal high-fructose diet plus post-weaning high-salt diet [70],
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antenatal glucocorticoid exposure [71], and antenatal glucocorticoid administration plus
post-weaning high-fat diet [72].

Maternal melatonin supplementation could be administered during gestation [73,74],
lactation [74,75], or both periods [65–73]. Additionally, melatonin treatment during early
childhood has been tested in the adenine-primed pediatric chronic kidney disease (CKD)
model [76], and the young spontaneously hypertensive rat (SHR) model [77,78]. Table 1
shows that the renal effects of the early use of melatonin included improvement in hyper-
tension, reduced nephron number, kidney function, and altered renal transcriptome.

Notably, certain mechanisms participate in the developmental programming of kidney-
related diseases, such as deficient NO, oxidative stress, aberrant RAS, epigenetic regulation,
disrupted autophagy–nutrient sensing pathway, glucocorticoid effect, and dysbiotic gut
microbiota. Figure 2 is a graphic illustration of the therapeutic and protective mechanisms
of melatonin interrelated to renal programming. Below, we will discuss each mechanism
in turn.
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4.3. Deficient NO

NO has an essential role in renal physiology and BP control [82]. Deficient NO has
a crucial role in kidney disease and hypertension of developmental origins [83]. Con-
versely, adverse programing processes and renal outcomes can be averted by NO-targeting
interventions during gestation and lactation. Melatonin can increase NO via reducing
asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase [84]. In young SHRs,
the antihypertensive effect of melatonin coincided with the decrease of ADMA in the
plasma and kidneys [77,78]. In a maternal NO deficiency model, deficient NO in gestation
caused by L-NAME administration led to offspring hypertension in adulthood [67], whilst
elevated BP and reduced renal NO could be restored concurrently by maternal melatonin
therapy [67].

The perinatal use of melatonin is also beneficial to offspring hypertension relevant
to the rebalancing of the ADMA-NO pathway in animal models of maternal caloric re-
striction [66], maternal high-fructose diet [69], and combined maternal high-fructose and
post-weaning high-salt diets [70]. In an adenine-induced pediatric CKD model [76], mela-



Int. J. Mol. Sci. 2023, 24, 8105 8 of 16

tonin therapy from 3 to 6 weeks of age prevented CKD-primed hypertension and kidney
damage, which was associated with a reduction in ADMA. These data above revealed that
melatonin could interact with NO, by which it provided beneficial effects against offspring
kidney-related diseases.

4.4. Oxidative Stress

As a well-known antioxidant, melatonin displays a protective role against oxidative
stress by scavenging free-radicals and activating antioxidant enzymes [2]. A previous re-
view revealed that several environmental stimuli in pregnancy linked oxidative stress to the
developmental programming of kidney disease [85], covering maternal nutrition imbalance,
maternal disorders, environmental chemical and toxin exposure, and medication use.

Due to the low-antioxidant capacity of the fetus, a surplus of reactive oxygen species
(ROS) under adverse intrauterine conditions overwhelms antioxidants, leading to oxidative
damage and, thus, compromising fetal development [86].

Prior work provides evidence of how maternal melatonin therapy protected adult
progeny against oxidative stress-related renal programming in models of maternal caloric
restriction [66], maternal L-NAME exposure [67], maternal high methyl-donor diet [68], ma-
ternal high-fructose diet [69], and antenatal glucocorticoid exposure [71]. When targeting
oxidative stress, the antioxidant actions of melatonin included decreased ROS-producing
enzyme expression, reduced ROS production, increased antioxidant capacity, and decreased
oxidative DNA damage.

Although melatonin has a significant impact on improving oxidative stress, one study
revealed that maternal melatonin supplementation which averted the rise in BP in young
SHR offspring might not be attributed to its antioxidant effects in kidneys [64]. Even though
recent advances have been made in the understanding of how oxidative stress impacts
renal programming, further work is needed to discover other protective mechanisms of
melatonin, not just its antioxidant functions.

4.5. Disrupted Autophagy–Nutrient Sensing Pathways

Emerging evidence points to the dysregulation of nutrient sensing signaling and au-
tophagy linking to a range of kidney diseases [87,88]. Several nutrient-sensing signals are
involved in fetal programming [89], including silent information regulator T1 (SIRT1), per-
oxisome proliferator-activated receptors (PPARs), AMP-activated protein kinase (AMPK)
and PPARγ co-activator 1α (PGC-1α). In pregnancy, maternal nutritional status influences
fetal development via nutrient-sensing signals [89]. Melatonin can modulate autophagy by
changing nutrient sensing pathways [90].

Melatonin supplementation protecting against kidney disease is connected to AMPK
activation [91]. In a maternal methyl-donor diet model, offspring hypertension coincided
with the reduced renal expression of SIRT1, AMPKα2, PPARβ, and PPARγ [68]. Another
study explored perinatal melatonin therapy and found that its beneficial actions against
high-fructose plus high-salt diet-induced offspring hypertension were related to regulating
renal AMPKα2, AMPKβ2, SIRT1, SIRT4, PPARγ, and PGC-1α expression [70].

In an antenatal dexamethasone administration plus post-weaning high-fat diet model,
the activation of genes related to nutrient sensing and autophagy prevented offspring’s
hypertension [92]. These findings were consistent with a previous study showing that
melatonin could mediate the renoprotective effect by upregulating the AMPK/SIRT1 axis
and enhancing the autophagy in a rat model of diabetic nephropathy [93]. Although a
link between melatonin and autophagy behind renal programming has been established,
whether its reprogramming effect is attributed to the enhancement of autophagy needs to
be evaluated further.

4.6. Aberrant RAS

Melatonin has a role in suppressing RAS [94], which is known as a hormonal cascade
controlling BP and kidney development [95,96]. The angiotensin II (Ang II)/angiotensin-
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converting enzyme (ACE) cascade is known to be the classic RAS, which can be counter-
regulated by the Ang (1–7)/ACE2 non-classic axis. In the developing kidney, RAS genes are
vastly expressed and have a transient biphasic response with downregulation of the classic
RAS in neonates that becomes normalized over time [97]. However, maternal insults enable
the interruption of this normalization and improperly initiate the classic RAS, leading to
kidney disease and hypertension in adult offspring [96,97].

The classic RAS axis is activated in melatonin-deficient hypertension [49]. BP-lowering
effects have been reported in studies using melatonin in pregnancy and lactation, together
with blocking the RAS, in animal models of gestational chronodisruption [63], maternal
continuous light exposure [65], maternal caloric restriction [66], and maternal high-fructose
diet [69]. Another study revealed that maternal melatonin therapy prevented offspring
hypertension programmed by antenatal dexamethasone administration plus post-weaning
high-fat diet, which coincided with an enhanced non-classic RAS axis by increasing renal
Agtr1b and Mas1 expression [72]. These observations above reveal a crosstalk between the
RAS and melatonin behind renal programming, while additional research is necessary to
confirm that the renoprotective actions of melatonin are directly RAS-dependent.

4.7. Gut Microbiota Dysbiosis

Another renoprotective mechanism of melatonin against renal programming might be
due to its capacity to shape gut microbiota. The gut is a rich source of extrapineal melatonin
with a ~400 times higher melatonin concentration in the gut than in the pineal gland [98].
Melatonin is a tryptophan-derived metabolite. Of note is that many tryptophan metabolites
derived from gut microbiota participate in the developmental programming of kidney
disease [99].

Emerging evidence supports gut microbiota dysbiosis in early life having adverse
effects resulting in diseases in adulthood [100], such as kidney disease [101]. As reviewed
elsewhere [101], a pathogenic interconnection, namely the gut–kidney axis, between the
gut microbiota and kidney diseases is implicated in CKD and its comorbidities. Disturbed
microbiota compositions and microbial metabolites are involved in pathogenesis. These
metabolites include short chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO),
tryptophan-derived uremic toxins, etc. [102–105].

A study investigating the effect of melatonin therapy for weeks in young CKD rats
found that CKD-primed hypertension and kidney damage was prevented by melatonin [76].
The beneficial action of melatonin was accompanied by alterations in gut microbiota, includ-
ing increased α-diversity, enhancement of the abundance of the phylum Proteobacteria and
the genus Roseburia, and an improved TMAO metabolic pathway. Considering that several
gut microbiota-targeted therapies have been applied for early prevention of CKD [101],
a better understanding of how melatonin mediates gut microbiota underlying renal pro-
gramming needs to be evaluated further.

4.8. Others

In view of the multifaceted actions of melatonin, there might be other mechanisms by
which it provides an advantage: (1) by counteracting glucocorticoid programming, (2) by
activating nuclear factor erythroid 2-related factor 2 (Nrf2), and (3) by regulating mitochondrial
function. Similar to melatonin, glucocorticoid participates in the circadian rhythm [106].
Glucocorticoid and melatonin can downregulate each other’s receptors [49,107]. Considering
that melatonin therapy prevented glucocorticoid programming-induced hypertension, the
interplay between melatonin and glucocorticoid on renal programming deserves further
elucidation. Additionally, melatonin can act like an Nrf2 activator [108]. In this regard, the
coupling of melatonin and its metabolites to the activation of Nrf2 has been demonstrated
in various organ systems [109–112]. Prior work indicated that Nrf2 activation has benefits
for the developmental programming of hypertension [92,113]. Although this remains
speculative, Nrf2 and other potential mechanisms are awaiting further clarification.
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Melatonin can be specifically targeted to the mitochondria, where it acts as an antiox-
idant [114]. In mitochondria, cytochrome c is a natural scavenger of H2O2, preventing
its accumulation. When electron transport is disrupted, the cytochrome c-dependent
pseudo-peroxidase reaction with melatonin could become dominant to exhibit a protective
mechanism [115]. Considering substantial evidence that has accumulated on the protective
role of mitochondrial targeting against kidney disease [116], it is interesting to know how
melatonin would coordinate mitochondrial interactions with the developing kidney to later
determine kidney health and disease.

5. Pending Issues and Future Directions

If melatonin is be used as a potential intervention in pregnant women to prevent
their offspring’s kidney disease, one major concern is its safety. A recent review revealed
that a total of seven of the pregnancy studies and three of the lactation studies involved
exogenous melatonin [117]. The dose of melatonin utilized in these studies ranged from 8 to
30 mg daily. No major adverse events or safety concerns were stated in most studies [117],
except for one case of reported bleeding [118]. Nevertheless, currently there is a lack of
clinical trials of melatonin use during pregnancy and lactation, especially trials related
to offspring outcomes. According to the available evidence, no conclusions can be made
about the safety of exogenously administered melatonin during gestation and lactation on
the long-term outcome for the babies perinatally exposed.

Another pending question that needs to be addressed is the ideal dose and admin-
istration route. Most human studies using 10 mg of daily melatonin are not adequate to
provide an adequate comparison with data on the therapeutic dose derived from animal
studies [119]. The doses of melatonin used should be evaluated in the 40–100 mg/day
range in view of the equivalent human doses of melatonin based on preclinical data. No-
tably, melatonin acts as a pro-oxidant at very high concentration (1–10 mM) [120]. In this
situation, melatonin cannot be considered as a hormone but a context-dependent regulator.
Considering that melatonin might display pro-oxidant activity when used at high concen-
trations [120], there is an utmost need for further research to recommend a maximum dose
of melatonin in humans.

Melatonin is traditionally administered orally, while its drawback is low bioavailability
due to fast release. Consequently, melatonin-sustained release formulations to humans via
oral, intranasal, transdermal, and transmucosal administrations have been developed [121].
Nevertheless, whether these routes are suitable for pregnancy and whether melatonin’s
pharmacokinetics are different in pregnant women are still not known [121].

Currently, melatonin might be the best peripheral biomarker for the circadian clock [122].
The onset of melatonin secretion under dim light conditions is the single most accurate
marker for assessing the circadian pacemaker [122]. Accordingly, there have been several
assays developed to analyze melatonin in blood and saliva for this aspect [123]. As its
daytime physiological level is very low, there is a need for a specific assay for melatonin
that is sensitive enough to detect low concentrations (<2 pg/mL). To date, several analytical
methods for the quantitative measurement of melatonin concentrations in the plasma and
saliva have been developed, including liquid chromatography with mass spectrometric
detection (LC)–MS, gas chromatography (GC)–MS, radioimmunoassay (RIA), and enzyme-
linked immunosorbent assay (ELISA) [123]. In clinical studies, ELISA and RIA are the most
commonly used methods. However, many studies have been considered either meaningless
or flawed due to extremely high levels caused by poor assay specificity [123]. Given that
people who have no pineal gland display extremely low (<1 pg/mL) circulating levels of
melatonin [124] and that melatonin level varies by age, with the lowest levels in young
infants [125], future work in developing a simple high-precision method for determining
melatonin in clinical practice is of utmost necessity.

Melatonin can be identified in both animal foods and edible plants [126]. A related
question is whether dietary melatonin in pregnancy is appropriate for an efficient protection
mechanism for offspring’s kidney disease The Mediterranean diet has been recommended
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for patients with CKD [127]. Part of this beneficial action might be attributed to the
components of Mediterranean diet, which cover several melatonin-rich foods such as fish,
red wine, olives, nuts, and fruits. Hence, some melatonin-rich foods might be of great
value for development into functional foods, which would contribute to the prevention
and treatment of kidney diseases.

As melatonin has pleiotropic biofunctions, its protective actions are difficult to predict
or evaluate with a holistic approach in an experiment. Is there a dose-dependent mechanism
behind the reprogramming effect of melatonin? Which protective mechanism might be most
important? If so, what is the efficient dose and when should melatonin be implemented,
and in which way, to mediate a specific protection mechanism? All these questions are still
open-ended. Therefore, additional work in developing an ideal methodology is required
to obtain a full-scope view of its protective mechanisms to ensure that melatonin therapy
would only apply in the right direction.

6. Concluding Remarks and Perspectives

There is substantial evidence that melatonin participates in the pathophysiology of
kidney health and disease. Although the use of melatonin as a potential preventive strategy
is promising in preclinical studies, more work needs to be done to deliver it clinically.

So far, safety and efficacy data are largely lacking regarding the use of melatonin
during gestation and breastfeeding and its reprogramming effects on offspring’s kidney
disease. This review emphasizes the need for clinical studies in this aspect, including
on exogenous melatonin, during pregnancy and lactation. Additionally, it is crucial to
establish guidelines for the clinical use of melatonin for pregnant and lactating women.

In conclusion, melatonin contributes significantly to kidney health. Melatonin therapy
in pregnancy and lactation can serve as a reprogramming strategy to prevent kidney
disease while clinical translation is pending. Our review highlights a new path for the use
of melatonin in working towards reducing the global burden of kidney disease.
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