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Abstract

Organ transplantation is a useful therapeutic tool for patients with end-stage organ 

failure; however, graft rejection is a major obstacle in terms of a successful treatment. 

Rejection is usually a consequence of a complex immunological and nonimmunological 

antigen-independent cascade of events, including free radical-mediated ischemia-

reperfusion injury (IRI). To reduce the frequency of this outcome, continuing 

improvements in the efficacy of antirejection drugs are a top priority to enhance the 

long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) 

is a powerful antioxidant and ant-inflammatory agent synthesized from the essential 

amino acid l-tryptophan; it is produced by the pineal gland as well as by many other 

organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has 

proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its 

benefits are based on its direct actions as a free radical scavenger as well as its indirect 

antioxidative actions in the stimulation of the cellular antioxidant defense system. 

Moreover, it has significant anti-inflammatory activity. Melatonin has been found to 

improve the beneficial effects of preservation fluids when they are enriched with the 

indoleamine. This article reviews the experimental evidence that melatonin is useful in 

reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, 

lung, pancreas, kidney, and liver transplantation.
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Introduction

Organ transplantation is a useful therapeutic tool for patients 
with end-stage organ failure. Surgery, drugs, and knowledge 
innovations may possibly improve results allowing this 
procedure to be used for other organs. According to World 
Health Organization (WHO), 114,690 transplants were 
performed worldwide in 2012, 1.8% more than in 2011, but 
still less than 10% of the global needs. Kidney (68%) and 
liver (21%) are the most frequently transplanted organs, and 

more of them are from deceased donors (58% kidney and 
82% liver) (http://www.transplant-observatory.org accessed 
24  September 2015). Continuing improvements in the 
efficacy of antirejection drugs have greatly contributed toward 
prolonging the long-term survival of transplant recipients; 
however, the 5-year survival following transplantation 
remains low (90% for renal, 75% for heart, 72% for liver, 55% 
for lung, and only 50% for heart–lung) (Fildes et al. 2009). 
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Moreover, lifelong use of immunosuppressive drugs increases 
the risk of opportunistic diseases and malignancies. About 
20% of transplanted patients have a diagnosis of cancer after 
10 years of continued immunosuppressive therapies, a risk 
two- to five-fold higher than that of the general population 
(Vajdic et al. 2006).

Complex immunological and nonimmunological 
problems accompany organ graft failure. A nonimmuno-
logical antigen-independent cascade of events is 
produced by ischemia-reperfusion injury (IRI). IRI is 
a pathological condition characterized by an initial 
restriction of blood supply to an organ followed by the 
restoration of perfusion, which involves oxidative stress 
that arises from the imbalance between free radical 
overproduction and insufficient antioxidant defense 
(Witzigmann et al. 2003, Land 2005). This process leads 
to cell death through the activation of several pathways 
(Selzner & Clavien 2001, Yellon & Hausenloy 2007, 
Ben Mosbah et al. 2010).

Melatonin (N-acetyl-5-methoxytryptamine) is a 
powerful antioxidant (Tan et al. 1993, Rodriguez et al. 2004, 
Zhang & Zhang 2014, Galano et al. 2015, Manchester et al. 
2015) produced by the pineal gland as well as by many  
other organs including ovary, testes, bone marrow, gut, 
placenta and liver (Tan et  al. 1999, Venegas et  al. 2012, 
Acuña-Castroviejo et  al. 2014, Reiter et  al. 2014). It is 
synthesized from the essential amino acid l-tryptophan in a 
process mediated by the action of four enzymes: tryptophan 
hydroxylase, l-aromatic amino acid decarboxylase, 
N-acetyltransferase, and acetylserotonin methyltransferase 
(Singh & Jadhav 2014). Melatonin is a biological rhythm 
regulator and has a variety of other essential functions 
(Hardeland et al. 2009, Reiter et al. 2009a, 2013, Maria & 
Witt-Enderby 2014, Romero et al. 2014, Coelho et al. 2015, 
Vriend & Reiter 2015).

A strong immunogenic stimulus of an allogeneic solid 
organ transplant does not modulate the endogenous patterns 
of melatonin secretion (Cardell et  al. 2008). For this and 
other reasons, and the fact that melatonin supplementation 
is considered safe, without reported adverse events (Buscemi 
et al. 2006), we suggest that melatonin would have beneficial 
effects in organ transplantation. We initially explain the 
graft rejection processes and thereafter provide the rationale 
for the proposed use of melatonin.

Ischemia-reperfusion injury

Cold ischemia causes parenchymal cell death as 
a consequence of widespread cellular metabolic 

disturbances resulting from glycogen consumption, lack of 
adequate oxygen supply, ATP depletion, and degradation 
of ATP into its metabolites (adenosine, inosine, and 
hypoxanthine), the conversion of xanthine oxidase by 
xanthine dehydrogenase, and reduced intracellular pH 
(Teoh & Farrell 2003, Zhai et  al. 2011). The decrease in 
pH levels is accompanied by lowered mitochondrial 
oxidative phosphorylation (Kanoria et  al. 2012). There 
is also reduced vascular perfusion, which is caused by 
endothelial swelling, intravascular hemoconcentration, 
and an imbalance between the vasoactive mediators 
endothelin (ET) and nitric oxide (NO·) (Kukan & Haddad 
2001, Scheinichen et al. 2003, Ramalho et al. 2006).

Reperfusion injury involves both direct and indirect 
cytotoxic mechanisms including an inflammatory 
immune response with the release of inflammatory 
mediators; interleukins (ILs) and TNF-α cause oxidative 
stress injury and recruitment of leukocytes (Lutz et al. 
2010, Zhai et al. 2011). These processes are summarized 
in Fig. 1. In addition, during vascular reperfusion, ATP 
metabolites are produced with increases in reactive 
oxygen species (ROS) levels including superoxide radical 
(O2

·−), hydrogen peroxide (H2O2), and the hydroxyl 
radical (·OH) (Boros & Bromberg 2006, Huang et  al. 
2007). The ·OH, which is produced due a reductive 
cleavage of H2O2 by Fe2+ or Cu2+, initiates the process 
of lipid peroxidation (LPO), this process consists of a 
radical chain reaction that leads to the destruction 
of polyunsaturated fatty acids. LPO disrupts normal 
fluidity and permeability of cell membranes causing 
cell edema, massive overload of Ca2+ and Na+, and 
cell lysis (Korkmaz et  al. 2009, Negre-Salvayre et  al. 
2010). Malondialdehyde (MDA) and 4-hydroxynonenal 
(4-HNE) are produced during LPO and are indicators 
of ROS-dependent tissue damage. MDA promotes the 
activation of nuclear factor-κB (NF-κB) through an 
inflammatory process, which regulates the expression of 
proinflammatory cytokines. 4-HNE is a chemoattractant 
for neutrophils (Jaeschke 1996).

During LPO, mitochondrial membrane permeability 
is increased due to a loss of mitochondrial integrity. 
This occurs as a result of the depletion of ATP levels and 
a rise in cellular Ca2+ concentrations, which promote 
an overload in mitochondrial Ca2+. This dysfunction 
results in the release of cytochrome c into the cytoplasm, 
subsequent activation of caspase activity, and initiation 
of apoptotic cell death (Crompton 1999). Changes in the 
permeability at mitochondrial membrane are mediated 
via activated pro-apoptotic members of the BCL2 family 
of proteins, including BAX or BAK (Reed 1994), or it is 
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secondary to mitochondrial permeability transition pore 
(MPTP) opening (Baines et al. 2005, Green 2005).

NO is generated by three different synthase 
isoforms (NOS): endothelial (eNOS), neuronal (nNOS), 
and inducible synthase (iNOS); each utilizes l-arginine 
and produces NO· and l-citrulline (Hines et  al. 2002, 
Hsu et  al. 2002). During IRI, diminished NO· levels 
are due to both decreased production and increased 
scavenging of NO· by elevated levels of ROS. This 
is important because NO· modulates the intensity 
of the IRI by regulating neutrophil adhesion and 
platelet aggregation (Serracino-Inglott et  al. 2001). 
During IRI, endothelial dysfunction occurs including 
a reduction in eNOS function due to a direct action 
and the elaboration of the endogenous competitive 
inhibitors (asymmetric dimethylarginine, ADMA), the 
increased coupling of NO· with O2

·− (which generates 
the peroxynitrite anion, ONOO·− a nonradical reactant 
which is equally toxic as ·OH) and cell-free hemoglobin, 
and the oxidation of target soluble guanylyl cyclase, a 
molecular target of NO· (Li et al. 2014).

Melatonin greatly limits IRI based on its direct 
actions as a free radical scavenger as well as its indirect 
antioxidative actions in the stimulation of the cellular 

antioxidant defense system, that is, by increasing mRNA 
levels and activities of several important antioxidant 
enzymes (Barlow-Walden et al. 1995, Pablos et al. 1998); 
these include superoxide dismutase (SOD, which catalyzes 
the conversion of O2

·− to H2O2), glutathione peroxidase 
(GPx), glutathione reductase (GRd), and glutamylcysteine 
ligase, which promotes the synthesis of another important 
intracellular antioxidant, glutathione (GSH) (Reiter et al. 
2000, Rodríguez et al. 2004, Hardeland 2005). In addition 
to directly scavenging several ROS and reactive nitrogen 
species (RNS), which are generated during IRI (Korkmaz 
et al. 2009, Reiter et al. 2010), it reduces myeloperoxidase 
(MPO) activity (Lee et al. 2002). Numerous studies have 
provided data showing that melatonin protects against 
the IRI-induced impairment of mitochondrial respiration, 
ATP synthesis, mitochondrial swelling, and LPO (Okatani 
et  al. 2003, Kireev et  al. 2013). Melatonin also reduces 
electron leakage from the respiratory chain that limits 
free radical generation and increases the expression 
of uncoupling protein, which is thought to improve 
electron flow through the respiratory chain and prevent 
mitochondrial O2

·− generation by increasing proton flow 
into the matrix (Pappolla et  al. 1999, Jiménez-Aranda 
et al. 2013).

Figure 1
Liver IRI physiopathology. Cold ischemia induces 
cellular ATP depletion, which results in the loss of 
electrolyte homeostasis and increases anaerobic 
metabolism promoting intracellular Ca2+ and H+ 
accumulation and lysosomal instability. These 
events inhibit mitochondrial oxidative 
phosphorylation, thereby reducing ATP synthesis 
and activating proteases. Perturbations of 
electrolyte homeostasis generate cellular swelling 
and edema, which result in narrowing of the 
sinusoidal lumen and microcirculatory 
dysfunction via endothelial barrier dysfunction. 
These alterations contribute to organ neutrophil 
accumulation through the induction of 
neutrophil chemoattractants and adhesion 
molecules. Neutrophil extravasation generates 
parenchymal injury due to the production of ROS. 
Finally, cell death culminates in necrosis or 
apoptosis depending on the decline of cellular 
ATP (major degradation and no regeneration 
causes necrosis). A full colour version of this 
figure is available at http://dx.doi.org/10.1530/
JOE-16-0117.
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Melatonin also regulates the activity of a marker of 
mitochondrial membrane integrity that is reduced during 
IRI: mitochondrial glutamate dehydrogenase (GDH). 
Moreover, melatonin stabilizes microsomal membranes, 
enabling them, in a concentration-dependent manner, 
to resist the rigidity induced by free radical attack 
(García et  al. 2014). Additionally, melatonin suppresses 
the cytochrome c released into the cytoplasm due to 
mitochondrial swelling (Kim & Lee 2008).

Finally, melatonin also preserves the functional 
and energetic status of cells during IRI by reducing 
concentrations of TNF-α (a pleiotropic cytokine 
generated by numerous cell types in response to various 
inflammatory and immunomodulatory stimuli) and 
inhibiting iNOS expression and NO· production. 
Melatonin augments the rise in eNOS mRNA levels, 
whereas it reduces the elevation of iNOS mRNA levels 
(Rodriguez-Reynoso et  al. 2001, Kilic et  al. 2005, Wang 
et al. 2005). This is important because eNOS-derived NO· 
is suggested to be an important protective factor against 
vascular endothelium pathophysiology because it is 
produced early and may abrogate the microcirculatory 
stress of engraftment and reperfusion. Conversely, iNOS-
derived NO· promotes ischemic injury by increasing free 
radical formation since it is generated several hours after 

stimulation and its production is not beneficial at this 
later time (Albrecht et  al. 2003, Shah & Kamath 2003). 
Some of the numerous processes by which melatonin 
functions as a direct free radical scavenger and indirect 
antioxidant are summarized in Fig. 2.

Preservation solutions

Preservation solutions play an important role in 
maintaining tissues for transplantation; these fluids  
have been subjected to numerous tests based on changes 
in ionic composition and in the inclusion of molecules 
designed to reduce intracellular and interstitial edema. 
During cold ischemia, sodium–potassium (Na+/K+) ATPase 
is inhibited elevating Ca2+ concentrations. This disturbance 
generates a local rise in intracellular osmolarity and 
edema and loss of membrane cell elasticity (Lang et  al. 
1995). To prevent this, a preservation solution including 
high-K+ levels was examined, but not found to be useful  
because of the generated blood vessel constriction 
(Ramella-Virieux et al. 1997). The addition of ‘impermeants’ 
such as mannitol, raffinose, glucose, lactobionic acid, 
and gluconate or high Na+ concentration was also not 
beneficial because these constituents diffused into the 

Figure 2
Melatonin’s direct (red) an indirect effects (blue). In 
the endothelium, xanthine oxidase generates 
O2

·− degrading xanthine to hypoxanthine; 
melatonin and its metabolites are scavengers of this 
and other ROS. Melatonin, in the extracellular 
medium and mitochondria, is also a scavenger of 
ONOO·− generated as a result of the availability of 
NO· due to eNOS and nNOS activity. Furthermore, 
O2

·− reactions with extracellular superoxide 
dismutase (ecSOD) give rise to H2O2, which suffers a 
reduction with Fe2+ generating ·OH. Melatonin 
neutralizes these ROS. In the cytosol and 
mitochondria, similar processes occur with the 
action of MnSOD and Cu/ZnSOD. Glutathione 
peroxidase (GPx) reduces H2O2 to H2O and O2. 
Melatonin increases the activity of this enzyme and 
also the activity of SOD, which are important 
antioxidant enzymes. During IRI, a depletion of ATP 
occurs and an increase in intracellular Ca2+ 
develops, which increases oxidative stress and loss 
of mitochondrial function. eNOS, endothelial nitric 
oxide synthase; H2O2, hydrogen peroxide; iNOS, 
inducible nitric oxide synthase; NO, nitric oxide; 
PLA-2, phospholipase A2; ROO·, alkyl peroxyl 
radical; O2

·−, superoxide radical; ·OH, hydroxyl 
radical; ONOO·−, peroxynitrite. A full colour version 
of this figure is available at http://dx.doi.
org/10.1530/JOE-16-0117.
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interstitial medium and caused edema. Thereafter, it was 
observed that macromolecules called ‘colloids’ (albumin 
(Alb), hydroxyethyl starch, polyethylene glycol, and 
dextran) generate high oncotic pressure and the addition 
of these to solutions with low Ca2+, high Na+, and carefully 
adjusted K+ and magnesium (Mg2+) concentrations solved 
the problems observed earlier (Southard 1997).

University of Wisconsin solution (UW), Institute 
Georges Lopez solution (IGL-1), Celsior (CE) solution, Euro-
Collins solution, and histidine–tryptophan–ketoglutarate 
solution (HTK) are the most frequently used preservation 
solutions (Table 1). Euro-Collins solution was the first used, 
which does not contain oncotic agents but does contain 
glucose (impermeable to renal cells for short time but  
not in liver and pancreatic cells causing anaerobic 
metabolism of glucose and inducing intracellular acidosis) 
(Bejaoui et al. 2015).

It is presumed that preservation solutions with lower 
viscosity (like HTK) may improve graft survival (Puhl et al. 

2006). It was also found that antioxidants and protective 
molecules such as polyethylene glycol 35 kDa (PEG-35) 
in IGL1 solution and hydroxyethyl starch (HES) in UW 
solution improved the efficiency of the solutions and 
consequently graft survival. HTK solution is less effective 
because its composition is poor in these agents (Belzer & 
Southard 1988).

Yang and He (2005) reviewed the data related to the 
use of preservation solutions in cardiac transplantation. 
The authors noted that UW was an effective tissue 
protector in heart transplantation (Swanson et al. 1988), 
but less effective in abdominal-tissue transplantation. 
This was because cardiac cells can only be preserved for 
4–6 h, while abdominal organs must be preserved for 
24–48 h (Stringham et  al. 1992). HTK solution is also 
observed to be effective by restricting the tissue acidosis 
induced by ischemia (Reichenspurner et  al. 1993, Gu 
et  al. 1996). In addition, some studies confirmed the 
efficacy of Celsior solution in reducing IRI (Menasché 
et  al. 1994). Moreover, the authors observed that NO, 
hyperkalemia, and IRI made transplant outcomes worse, 
while Mg2+ and endothelium-derived relaxing factor 
attenuated these effects.

Pancreatic preservation fluids also have been studied. 
It is observed that UW produced results similar to those of 
HTK (Salehi et al. 2006) and better outcomes than Celsior 
solution (Hubert et al. 2007). For kidney transplantation, 
the UW solution provides good results in short- and long-
term tissue preservation (Xiaodong & Ashok 2010, Catena 
et  al. 2013). IGL1 exhibits similar positive outcomes as 
UW (Codas et al. 2009) or even better (Badet et al. 2005).

Donderó et  al. (2010) and Adam et  al. (2015), in 
a liver transplantation review, summarized the data 
related to the utility of UW solution and IGL1 solution 
to resist graft rejection. A slight graft rejection increase 
with CE solution and a significant reduction with HTK 
solution was observed. Moreover, the authors observed 
that HTK caused major graft rejections and constitutes 
an independent risk factor compared with UW, which 
increased the probability of graft loss by 10%. These 
results were also previously reported (Mangus et al. 2008, 
Stewart et al. 2004). Similar results were observed when 
CE and IGL1 were compared. Moreover, in partial grafts, 
IGL1 provided better survival than the other solutions 
because it increased the mediators that promote liver 
regeneration such as AMP-activated protein kinase 
(AMPK) (Bouma et  al. 2010). Furthermore, UW and 
IGL1 solutions enriched with trophic factors, such as 
epidermal growth factor and insulin-like growth factor-1, 
are observed to enhance the resistance of steatotic livers 

Table 1 Composition of cold storage solutions for organ 

preservation.

UW CE HTK IGL-1
Euro- 

Collins

Osmolarity (mOsm/L) 320 320 310 320 375
pH 7.4 7.3 7.2 7.4 7.1
Viscosity (cp) 5.70 1.15 1.8 1.28 N/A
Na+ (mmol/L) 25–30 100 15 120 10
K+ (mmol/L) 125–130 15 10 30 115
Mg2+ (mmol/L) 5 13 4 5 –
Ca2+ (mmol/L) – 0.25 0.015 – –
Cl− (mmol/L) – 41.5 50 20 15
PO3

− (mmol/L) 25 – – 25 47.5
SO4

− (mmol/L) 5 – – 5 30
HCO3

− (mmol/L) – – – – 10
Glucose (mmol/L) – – – – 195
Histidine (mmol/L) – 30 198 – –
Tryptophan (mmol/L) – – 2 – –
Glutamate (mmol/L) – 20 – – –
α-Ketoglutarate 

(mmol/L)
– – 1 – –

Lactobionate (mmol/L) 100 80 – 100 –
Mannitol (g/L) – 60 30 – –
HES (g/L) 50 – – – –
PEG-35 (g/L) – – – 1 –
Raffinose (mmol/L) 30 – – 30 –
Adenosine (mmol/L) 5 – – 5 –
Allopurinol (mmol/L) 1 – – 1 –
Glutathione (mmol/L) 3 3 – 3 –

Additional ingredients in UW are penicillin G, insulin, and 
dexamethasone. Viscosity data refer to a temperature of 4°C. From 
Petrowsky and Clavien (2014) and Adam et al. (2015).CE, Celsior solution; 
cp, centipoises; HES, hydroxyethyl starch; HTK, histidine–tryptophan–
ketoglutarate solution; IGL-1, Institute Georges Lopez solution; PEG-35, 
polyethylene glycol 35 kDa; UW, University of Wisconsin solution.
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to IRI, partly due to protein kinase B (PKB) and eNOS 
signaling activation, and reduced cytokine release 
(Zaouali et al. 2010a,b).

Attending to cardiac transplantation, preservation 
fluids also play a pivotal role in graft survival. A solution 
consisting of melatonin (100 mmol/L), adenosine 
(400 μmol/L), lidocaine (1000 μmol/L), and insulin 
(0.01 IU/mL) was compared with adenosine-lidocaine 
cardioplegia with low Ca2+/high Mg2+ concentration 
levels, HTK solution, and Celsior solution (Rudd & 
Dobson 2011). The authors observed a higher recovery 
of aortic flow and coronary flow by using the melatonin 
preservation solution compared with other treatments. 
Heart rate and systolic pressure were also better in this 
group. In addition, lactate levels were lower in these 
animals, and troponin values were not detected after 
5 min of reperfusion, as observed in the adenosine-
lidocaine-treated rats.

Preservation solutions also play an important role in 
kidney transplantation. Melatonin added to UW solution 
decreases significantly MDA and lactate dehydrogenase 
(LDH) more than UW solutions without melatonin in 
transplanted kidneys (Aslaner et al. 2013).

In liver transplantation, adding melatonin at a 
concentration of 100 μM in Krebs–Henseleit bicarbonate 
(KHB) solution and added to UW and Celsior solutions 
attenuates the histopathological effects produced during 
IRI of hepatocytes (Freitas et  al. 2006). LDH and GSH 
levels of melatonin-treated rats were similar to control 
values. ATP levels were restored by melatonin after 
IRI; these values are usually reduced seven-fold. These 
results are in agreement with previous studies (Vairetti 
et  al. 2005), but in this case a dose-dependent effect 
of melatonin on bile production and biliary bilirubin 
secretion also was observed. ATP levels were likewise 
increased and GGT levels reduced. GSH and LDH did 
not exhibit any modifications. These benefits were better 
when melatonin was added to the UW solution than to 
the Celsior solution.

The ubiquitin proteasome system (UPS) is an energy-
dependent system that degrades misfolded proteins and 
regulates various cellular processes (Padrissa-Altés et  al. 
2012). In liver, it has been recently demonstrated that 
the addition of the reversible UPS inhibitors bortezomib 
(BRZ) and carbobenzoxy-Leu-Leu-leucinal (MG132) to 
UW solution improved steatotic and nonsteatotic liver 
preservation, and that the protective effect of BRZ was 
superior to that of MG132 (Zaouali et  al. 2013a). IGL1 
solution supplemented with BRZ also showed protective 
effects which were partially mediated through the 

activation of AMPK and Akt/mTOR signaling (Bejaoui 
et al. 2014). Melatonin has similar actions to BRZ, which 
could contribute to the ability of melatonin to protect 
transplanted tissues (Vriend & Reiter 2014a,b).

Organ transplantation

Cardiac transplantation

Cardiac transplantation is a useful treatment for 
patients with end-stage heart failure or severe coronary 
arterial disease (Gill 2008). The outcome of these 
procedures have improved using cyclosporine (CsA) as 
an immunosuppressive therapy (Aumente et  al. 2005), 
but this drug has several limitations due to its side effects 
(Baan et al. 1994). Melatonin has been studied as an agent 
to protect against graft rejection.

In a rat model using Thomas solution with melatonin 
(0.1 mmol/L) (Gao et al. 2003), cardiac functional recovery, 
coronary vasodilatory response to acetylcholine chloride, 
and myocardial high energy phosphate findings, were 
much better than those of control animals after 12 h 
of hypothermic ischemia. Furthermore, creatine kinase 
(CK) levels were lowered in treated group after 15 min 
of reperfusion. In addition, degeneration, swelling, and 
loss of normal dense granules in mitochondria were 
observed in non-melatonin-treated animals, but not in 
treated rats. These results are in agreement with another 
study where melatonin was given orally suspended in 
1.5 mL saline solution (one group received 20 mg/kg and 
another group 200 mg/kg melatonin) (Jung et al. 2004). 
The authors observed a prolonged allograft survival in 
the melatonin-injected animals (7.3 ± 1 and 12.3 ± 1 days, 
respectively) versus control rats (6.3 ± 1 days) due to a 
decreased proliferative capacity of recipient lymphocytes 
and due to a reduction in the synthesis of allospecific 
antibodies.

Melatonin also produced beneficial effects in cardiac 
transplantation through a synergetic action with CsA in 
a rat model (Liu et  al. 2014). The authors administered 
200 mg/kg/day of melatonin to one group, 20 mg/kg/day  
of CsA to the second group, and 50 mg/kg/day of 
melatonin with 5 mg/kg/day of CsA to the third group. 
CsA was more effective than melatonin alone on graft 
survival, but combining these drugs gave the best result 
(31.6 ± 2.4 days). This finding may have been a result 
of a reduction in the expression of P65, Bcl2, and Il1β, 
which are key genes in inflammation and apoptosis. 
Histopathological data showed a similar release of 
inflammatory cytokines, including IL2 and TNF-α, and 
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cell apoptosis in melatonin and CsA group. However, the 
addition of these drugs produced an important decrease 
in heart congestion and cell survival. The results suggest 
that melatonin may be effective in prolonging cardiac 
allograft survival and reducing the dose of CsA, thereby 
reducing the side effects of the drug.

Bone transplantation

Melatonin is observed to be a promoter of bone formation  
in vivo, enhancing both the proliferation and differentiation 
of osteogenic cells (Takechi et  al. 2008). Moreover, the 
indoleamine may increase gene expression of bone 
sialoprotein as well as other proteins and bone markers 
reducing the osteoblast differentiation period (Roth et al. 
1999). Also, melatonin interferes with osteoclast activity, 
which is enhanced due to free radical actions. Melatonin 
limits the suppression of bone resorption due to its ability 
as a free radical scavenger (Koyama et  al. 2002) and by 
downregulating nuclear factor B-mediated osteoclast 
activation (Ostrowska et al. 2010).

Pinealectomy generates spinal deformities due to 
the reduction in melatonin (Turgut et  al. 2003). The 
authors also observed a reduction in the number of 
chickens with scoliosis with an enhanced values of Cobb 
angle and rib-vertebra value in pineal-transplanted birds 
versus pinealectomized chicks. The differences were not 
statistically significant between both groups, whereas 
significantly larger than those found in control group. 
Serum melatonin levels were depressed after pinealectomy, 
but pineal-transplanted animals were observed to have 
increased levels of melatonin, but the differences were 
also not statistically significant. Due to that, the authors 
conclude that the role of melatonin in the development  
of spinal deformity in chickens after pinealectomy 
remains controversial.

In a tibia rabbit model, melatonin (1.2 mg lyophilized 
powdered melatonin applied topically) added to a 
porcine bone graft was shown to improve new bone 
formation and cortical bone length compared with 
control animals or porcine bone alone at 15, 30, 45, and 
60 days post-transplantation (Calvo-Guirado et al. 2015). 
These effects were the result of an increase in osteoblast 
proliferation in the peri-implant zone with an accelerated 
cell differentiation of the osteoid matrix. Melatonin’s 
beneficial effects were observed radiographically 
and related to the Ca2+ levels, which were higher in 
melatonin-treated animals than in other groups. These 
results were statistically significant at 15 and 30 days  
post-transplantation.

Otolaryngology transplantation

Subtotal and total ear reattachment is a difficult surgery 
with a poor graft survival (Grabb & Dingman 1972). 
It has been shown that methylprednisolone sodium, 
dimethylsulfoxide, chlorpromazine, and indomethacin 
significantly improve survival of reimplanted auricular 
cartilage grafts in rabbits (Aden & Biel 1992, Henrich 
et  al. 1995). Melatonin’s benefits during auricular 
transplantation (500 mg/kg i.p.) were compared in a rat 
model versus dimethylthiourea (DMTU) and hyperbaric 
oxygen (HBO) (Lim et  al. 1999). Template weights 
showed a significant improvement in graft survival with 
all treatments at days 7, 14, and 21. However, during 
photographic analysis, significant differences in graft 
survival were only found at day 7. Moreover, DMTU was 
the most effective treatment and HBO the worst.

Ovarian grafts

CsA has been used for several years to inhibit the recipient 
immune reaction during ovarian transplantation, but 
there is an important toxicity following its use (Ergüder 
et  al. 2005). Thus, antioxidants including DMSO, 
1,2-propanediol (PROH) (Abir et  al. 2009), and vitamin 
E (Nugent et  al. 1998) were used with beneficial effects 
in ovarian graft survival. Melatonin is known to be 
involved in ovarian physiology including follicular 
development, ovulation, oocyte maturation, and luteal 
function (Adriaens et al. 2006; Reiter et al. 2009b, Tamura 
et al. 2009). Furthermore, endometriosis is observed to be 
favored in pinealectomized rats with decreased levels of 
SOD and CAT activities and elevated MDA concentrations 
(Koc et  al. 2010). Because of this and the antioxidant 
capacities of melatonin, its metabolites (Alvarez-Diduk 
et  al. 2016) have been studied to prevent ovarian  
graft rejection.

Melatonin at doses of 20, 50, 100, and 200 mg   ⁄   kg   ⁄day 
i.v. were used in a rat model to improve ovarian graft 
survival (Hemadi et al. 2012). With doses of 20 or 50 mg/kg,  
melatonin increased IL2 and interferon (IFN)-γ levels. 
However, at higher doses, the authors observed significant 
reductions of these cytokines. IL10 levels were also 
decreased using 100 and 200 mg/kg of melatonin. By 
comparison, IL4 levels were not changed when using the 
drug. Relative to allospecific serum antibodies (IgM, IgG, 
IgG1a, and IgG2a), the authors only founded significant 
benefits using 100 and 200 mg/kg of melatonin with a drop 
in IgM and IgG2a levels compared with control values. 
However, at the morphological level, these higher doses 
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did not appear to be beneficial. Apoptosis of primordial 
follicles also followed melatonin administration. There 
were no healthy antral follicles in the vitrified thawed 
ovaries treated with melatonin 6 days after transplant, but 
they did reappear at the seventh day after transplantation 
in both nontreated and most melatonin-treated ovaries.

Melatonin (20 mg/kg i.p.) also was compared 
with oxytetracycline (10 mg/kg i.p.) in an autologous 
intraperitoneal ovary transplantation system in rats 
(Sapmaz et  al. 2003). Melatonin was statistically 
significantly more effective in reducing ovarian necrosis 
and tissue MDA levels than was oxytetracycline. The 
indoleamine (240 mg/L orally) was also compared with 
hyaluronan (HA), vascular endothelial growth factor A 
(VEGF-A) (200 ng/mL), and vitamin E (400 IU/mL) in a 
human ovarian material study after its transplantation 
into immunodeficient mice (Friedman et  al. 2012). 
The authors observed a reduced apoptosis in all treated 
animals, but these results were statistically significant in 
melatonin + HA-rich biological glue + VEGF-A + vitamin E 
animals. There were no significant differences in VEGF-A 
expression among the tissues. Atretic follicles were 
significantly higher in the untreated animals than in the 
treated groups.

Testicular grafts

Spermatogenesis is disrupted during radiotherapy or 
chemotherapeutic treatment and the freezing of semen 
before treatment is the principal means of solving 
this problem (Lass et  al. 2001, Agarwal & Allamaneni 
2005). This treatment is obviously not useful for 
children, and about 2% of all malignant cancers occur 
during childhood and infancy (Brougham & Wallace 
2005). Leydig cells and Sertoli cells are known to have  
receptors for melatonin and it has been suggested that 
melatonin may play a role in the spermatogenesis 
process (Frungieri et al. 2005).

Testicular grafts have been studied to promote 
spermatogenesis and melatonin is suggested to reduce 
transplant rejection rates. Hemadi et al. (2014), using a 
vitrified testicular graft model, observed that melatonin 
(20 mg/kg orally per day) reduces atrophic cords and 
improve preservation results of the morphological 
histology of the tissues than did nontreatment. These 
beneficial effects included a higher percentage of intact 
seminiferous tubules with ongoing spermatogenesis, 
reduced levels of activated myoid cells, decreased rate 
of lysosomes, phagolysosomes and lipid droplets in 
the Sertoli cells, more preserved Leydig cells, and a rise 

in the number of mitochondria with well-developed 
cristae. The differences were statistically significant.

Spermatogonial cell transplantation into the testes of 
infertile animals was observed to lead to the reoccurrence 
of spermatogenesis (Orwig & Schlatt 2005, Mikkola et al. 
2006, Kim et al. 2008). Melatonin treatment (20 mg/kg i.p. 
daily for 10 weeks after transplantation) was studied by 
Gholami et al. (2014) in a mice model. The results showed 
that large number of sperm was found in the lumen 
of seminiferous tubes with complete spermatogenesis 
in melatonin-treated animals. Furthermore, the 
morphological structure and the number of Leydig cells 
were also preserved. These results are in agreement with 
previous studies, where the administration of melatonin 
to azoospermic mice led to a complete regeneration of 
germ cells with the appearance of elongated and round 
spermatids (Mohammadghasemi et al. 2010).

Lung transplantation

Lung transplantation is an effective therapeutic option 
in the treatment of patients with end-stage pulmonary 
diseases. However, early acute graft dysfunction is a 
serious obstacle in obtaining a successful outcome due 
to significant postoperative morbidity and mortality 
(Hosepund et  al. 1999). It is observed that IRI is a 
common complication after lung transplantation; this 
is characterized by nonspecific alveolar damage and 
pulmonary edema (De Perrot et al. 2003).

Inci et  al. (2002) studied the IRI effects after lung 
transplantation and the ability of melatonin to prevent 
the damage in a rat model. Significantly higher oxygen 
blood levels 2 h after graft reperfusion was observed in 
melatonin-treated versus nontreated animals. Peak airway 
pressures and bronchoalveolar lavage nitrite values were 
also statistically significantly lower in treated animals. 
MDA levels generated by LPO and MPO activity were also 
significantly lower as a result of melatonin treatment.

Melatonin’s beneficial effects against IRI after 
lung transplantation were also compared with other 
antioxidants including estradiol (25 mg/kg i.p.) and  
desferrioxamine (20 mg/kg i.p.) in a rat model 
(Santana-Rodríguez et  al. 2011). The authors observed 
that melatonin (10 mg/kg i.p.) had similar effects to 
desferrioxamine in preventing IRI based on radiological 
evidence. However, estradiol treatment induced several 
complications, including moderate-to-severe edema. 
There were no significant differences between any 
treatment groups in terms of their efficacy against acute 
graft rejection.
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CD26/dipeptidylpeptidase IV (CD26/DPP IV) is observed 
to modulate the biological effects of several chemokines, 
hematopoietic growth factors, neuropeptides, and 
hormones (Lambeir et al. 2003). As a result, it was predicted 
that this treatment may reduce IRI in lung transplantation 
(Jung et al. 2006, Zhai et al. 2007). The beneficial effects of 
this treatment against graft rejection were compared with 
melatonin (10 mg/kg i.p.) in a rat model (Zhai et al. 2009). 
The authors observed a significantly poorer outcome in 
terms of graft survival after 7 days in melatonin-treated 
animals compared with those given CD26/DPP i.v. This 
study also reported an improvement of lung function 
and histological structure, decreased MDA levels, reduced 
MPO activity, and reduced vasoactive intestinal peptide 
levels, a neuropeptide involved in pulmonary parenchyma 
physiology with the latter treatment. These measures were 
statistically significant and were not investigated in the 
melatonin-treated animals.

Pancreas transplantation

Melatonin (10 mg/kg/day/6 weeks) was shown to 
ameliorate type 2 diabetes mellitus associated with obesity 
due an increase of Ca2+ in muscle, liver, different adipose 
tissues, and pancreas in rats (Agil et al. 2015), and it reduced 
age-related insulin resistance in senescence-accelerated 
mice (Tresguerres et al. 2013). Moreover, blood levels of 
ghrelin, leptin, and melatonin are elevated in the initial 
phase of pancreatic inflammation, suggesting that these 
hormones could be a part of the innate resistance system 
against this condition. The exogenous administration 
of these substances produces a significant attenuation 
of severity of pancreatitis and protects pancreatic tissue 
from inflammatory damage. These beneficial effects are 
a result of inhibition of NF-κB, modulation of cytokine 
production, stimulation of heat shock protein (HSP), 
and the activation of the antioxidant system (Jaworek & 
Konturek 2014). As a result, melatonin also modulates 
pancreatic carcinogenesis through its direct and indirect 
actions and by increasing the efficacy of oncostatic drugs 
(Jaworek & Leja-Szpak 2014).

Once diabetes mellitus evolves, pancreas 
transplantation is an effective therapy, but technical 
failures and early graft failures due to loss of primary 
function are responsible for graft loss in 6–10% and 
3–5% of the cases, respectively (Wullstein et  al. 2004, 
Gruessner & Sutherland 2005). IRI is associated with 
alterations in mitochondrial function, which leads to 
the formation of oxygen-derived free radicals and LPO of 
the phospholipids in the cell membrane generating MDA 

and 4-HDA (García-Gil et  al. 2006, 2012); melatonin,  
in a rat model, reduces these degenerative changes 
(Muñoz-Casares et  al. 2006). In addition, acute graft 
rejection is linked to a loss of organ function due to an 
increase in glucose concentrations and a reduction in 
membrane fluidity in pigs (García Gil et al. 2012).

There are few studies related of the ability of 
melatonin to prevent pancreas graft rejection. It has 
been observed that in nonobese diabetic (NOD) mice, 
melatonin (200 mg/kg s.c.) prolongs pancreatic islet 
graft survival (Lin et  al. 2009). The authors, however, 
did not observe differences of glucose or insulin levels in 
these animals. Melatonin decreased T helper 1 (Th1) cell 
levels, which play a pathogenic role during the initiation 
of the disease process. Consequently, melatonin reduced 
in a significant manner the proliferative capacity 
of recipient splenocytes due to a reduction in the 
expression of concanavalin A and CD3, which stimulates 
Th1. Furthermore, melatonin treatment significantly 
increased the population of IL10-producing CD4 T cells 
supporting their protective effects. The indoleamine also 
decreased the expression of cytokines (IFN-γ, TNF-α, 
IL4, IL1β, and TGF-β), but it did not influence systemic 
lymphocyte development. TNF-α results were only 
statistically significant.

The antioxidative effects of melatonin and ascorbic 
acid (AA) were compared in a pig transplantation model 
(García-Gil et  al. 2011); both were given at 10 mg/kg 
i.v. AA did not increase graft survival, while melatonin 
animals showed a significant rise in graft survival. This 
result was reflected in pancreatic function with better 
maintenance of normoglycemic status in the melatonin-
treated pigs. Markers of LPO (MDA + 4-HDA) were also 
decreased by both antioxidants, but the results were 
better in melatonin-treated pigs. Acute-phase protein/
inter-α-trypsin inhibitor heavy chain 4 (pMAP/ITIH4), an 
acute protein observed during graft rejection, was only 
inhibited in pigs given melatonin. The authors did not 
report significant differences in amylase levels.

Kidney transplantation

Chronic kidney diseases lead to high oxidative stress 
markers and hemodialysis is not sufficient to adequately 
control these pathophysiologies (Pawlak et al. 2007). Like 
other organs, these conditions may benefit from organ 
transplantation and several studies observed changes in 
these markers after kidney transplantation (Simmons 
et  al. 2005). The problem is that the inflammatory 
response generated by the graft implant may generate 
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oxidative stress and organ rejection (Vural et  al. 2005, 
Barakat et al. 2010). Moreover, it is observed that diabetic 
patients have a further increase of oxidative markers due 
to their illness; this is associated with a poorer kidney 
allograft function (Morales-Indiano et al. 2009).

Several studies have tested antioxidants such as 
N-acetyl-cysteine (NAC) (Erdogan et  al. 2006), vitamin 
C and E (Loong et  al. 2004), and melatonin (Quiroz 
et  al. 2008) in terms of their ability to reduce IRI. 
Melatonin (500 μg/kg) also provides protection against 
CsA-induced nephrotoxicity by decreasing blood urea, 
serum creatinine, and plasma MDA levels, and increasing 
creatinine and lithium clearance (Kumar et  al. 1999). 
These disturbances are a result of oxidative stress injury. 
Similar protective antioxidant effects are observed against 
tacrolimus nephrotoxicity in a rat model; the protection 
by melatonin (4 mg/kg i.p.) is the result of its ability to 
modulate the increase of TNF-α, IL6, NO, and MDA levels 
(Ara et  al. 2011). All results were statistically significant 
except those related to MDA levels.

Donor preconditioning with melatonin (50 mg/kg 
orally) was observed to prolong graft survival in a rat 
model of kidney transplantation (Li et al. 2009). Blood urea 
nitrogen (BUN), creatinine, transaminases, and LDH levels 
were increased in control animals after transplantation; 
melatonin reduced these levels significantly. The authors 
also observed that the indoleamine induced an elevation 
of tissue SOD while reducing lipid hydroperoxide levels. 
Melatonin also modulated the immune response by 
downregulating the expression of NF-κB p65, thereby 
modifying the activity of iNOS and caspase-3. In addition, 
a significant reduction in the histological damage of renal 
tubules was apparent.

Another problem observed after kidney transplan-
tation is the disturbance in circadian rhythms and 
sleep–wake cycles including poor sleep quality, poor 
daytime functioning, and daytime sleepiness. These 
patients experience insomnia, restless legs syndrome 
(a neurological disorder), and obstructive sleep apnea 
(Burkhalter et  al. 2015). It is suggested to be a result 
of an innate immune response (Kapsimalis et  al. 2008, 
Besedovsky et al. 2012) or due to the inflammatory effects 
generated after transplantation (Castanon-Cervantes 
et al. 2010). A human multicenter study (Burkhalter et al. 
2015) observed that the daytime bright light therapy 
improved sleep quality and the disorders derived from 
it. Decreased levels of melatonin were also observed in 
all patients, and the authors suggested that the intake 
of β-blockers and acetylsalicylic acid likely interfered 
with melatonin secretion, as shown in previous studies 

(Brismar et  al. 1988). However, melatonin levels in 
control subjects were similar to those in the intervention 
group, and behaviorally the patients showed significant 
statistical improvement as a result of melatonin. These 
results are in agreement with other studies (Russcher 
et  al. 2015). In the latter case, the authors also did 
not observe beneficial effects on sleep quality due to 
melatonin-mediated improvement of renal function 
after transplantation; conversely, in an unpublished 
claim, kidney transplantation was associated with 
a rise of melatonin levels and an improvement in 
sleep quality due to the recovery of organ function  
(M Russcher, B C P Koch, C A J M Gaillard, J E Nagtegaal &  
P M Ter Wee, unpublished observations).

It is well known that a worst renal function is 
associated with sleep disorders (Ezzat & Mohab 2015). 
This may be a result of an imbalance between defensive 
agents (melatonin is decreased) and an increasing cell 
death rate due to the rise in oxidative markers such as 
TNF-α (Pinto et al. 2016). However, with improved renal 
function, low melatonin-related sleep disorders are 
observed to be reduced. More studies are clearly needed to 
define the circadian rhythm disturbances that accompany 
kidney transplantation.

Liver transplantation

Liver transplantation is the last-resort treatment for the 
end stage of both acute and chronic hepatic diseases. 
IRI, inherent in every liver transplantation process, is 
responsible of 81% of retransplantations during the 
first week after surgery due to poor function or primary 
nonfunction of the liver allograft (Belzer & Southard 
1988, Shaw 1995). Graft failures are caused by prolonged 
cold storage, especially when steatosis is present. Also, 
donor fatty livers are associated with increased levels of 
recipient morbidity, mortality, and increased sensitivity to 
IRI (Chavin et al. 2004). This occurs because liver steatosis 
exhibits microvascular alterations, mitochondrial 
dysfunction, and a lower number of sinusoids, which 
increase IRI (Hui et  al. 2004). Steatotic liver grafts are 
also associated with a primary nonfunction rate of 60% 
compared with less than 5% for nonsteatotic grafts 
(Selzner & Clavien 2001, Farrel et al. 2008).

During liver failure, ammonia levels may cause the 
arrhythmic release of melatonin from the pineal gland; 
this arrhythmicity is corrected after successful liver 
transplantation (Córdoba et al. 2009). However, whether 
these associations are real is questioned because it also 
suggested that hyperbilirubinemia (a pathological status 
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in liver failure patients) may interfere with the plasma 
melatonin assay (Middleton 2006).

AMPK activation during IRI leads to the stimulation of 
fatty acid oxidation and inhibition of lipogenesis, glucose 
production, and protein synthesis (Viollet et  al. 2006). 
The activation of this enzyme produces the accumulation 
of α-subunit of hypoxia-inducible factor-1 (HIF1α, a 
transcription factor that functions as a master regulator of 
adaptive responses to reduced O2 availability) (Fisslthaler 
& Fleming 2009) and induces NO· generation, which 
impairs the normoxic degradation of HIF1α (Zaouali et al. 
2010c). In fatty livers, the combined effect of melatonin 
and trimetazidine (TMZ at 10−3 μM + melatonin 100 μM) as 
additives to IGL1 was observed to induce AMPK activation 
and enhance eNOS induction; as a consequence, HIF1α 
was stabilized (Zaouali et  al. 2013b). The combination 
of drugs caused the activation of protective genes 
including Hsp70, Bcl2, erythropoietin, Vegf, and heme 
oxygenase-1 (Ho1) (Zaouali et al. 2013a). The benefits of 
the TMZ + melatonin cocktail added to IGL1 preservation 
solution in reducing endoplasmic reticulum stress and 
increasing autophagy in fatty liver grafts through the 
modulation of AMPK activity were also observed by other 
workers (Matsui et al. 2008, Wang et al. 2011).

The beneficial actions of melatonin were investigated by  
examining a pharmacological pretreatment cocktail, which 
included pentoxifylline (50 mg/kg intra-arterial), glycine 
(100 mg/kg intra-arterial), deferoxamine (30 mg/kg intra-
arterial), NAC (150 mg/kg i.p.), erythropoietin (1000 IU i.p.), 
simvastatin (5 mg/kg intragastric), and melatonin (10 mg/kg  
i.p.) (von Heesen et al. 2011). The authors observed that 
the addition of melatonin induced a decrease of TNF-α and 
intercellular adhesion molecule 1 (ICAM1) levels (ICAM1 is 
induced by TNF-α and IL-1), with a significant attenuation 
of hepatic leukocyte infiltration, vacuolization, and cell 
death. This group also observed that with the multidrug 
treatment, MDA levels also lowered liver enzymes and 
excretory liver function levels were recovered to nearly 
control levels (von Heesen et al. 2012). These authors also 
used another multidrug treatment based on curcumin 
(50 mg/kg intragastric), simvastatin (5 mg/kg intrasgastric), 
NAC (150 mg/kg i.p.), erythropoietin (3000 IU/kg i.p.), 
pentoxyphylline (50 mg/kg i.p.), melatonin (10 mg/kg i.p.), 
glycine (100 mg/kg intra-arterial), and methylprednisolone 
5 mg/kg intra-arterial (Moussavian et  al. 2011). The 
significant increases of K+ (a cell membrane integrity 
marker), and ALT, AST, and LDH (parenchymal cell death 
indicators) were normalized by pretreatment with this 
cocktail. Furthermore, bile flow was restored and TNF-α, 
IL6, and MDA levels were reduced. These improvements 

were in agreement with the histopathological findings, 
where a reduced vacuolization and caspase-3 expression 
was seen when melatonin was added to the cocktail.

Isolated primary human hepatocytes represent an 
alternative treatment to orthotopic liver transplantation 
(Smets et  al. 2008, Fitzpatrick et  al. 2009), and also 
a pathway to developing extracorporeal bioartificial 
livers (Allen et al. 2001). The problem is that during the 
isolation process, hepatocytes suffer IRI (Francés et  al. 
2007). A recent study (Solanas et al. 2015) used melatonin 
or DMSO to prevent this injury (perfusion with 5 mM 
melatonin compared with perfusion with 1% DMSO). 
These antioxidants produced similar cell viability and 
cell attachment results. Cellular dehydrogenase activity, 
urea and Alb levels, 7-ethoxycoumarin O-deethylase 
(a market of cytochrome P450 activity) activity were 
also increased by melatonin and were not statistical 
significant different from DMSO. The indoleamine was, 
however, better at decreasing LPO in hepatocytes than 
was DMSO.

Human dental pulp stem cells (hDPSCs) are 
observed to differentiate into hepatocyte-like cells 
(Ishkitiev et  al. 2012). Because of this, a recent study 
tested the benefits of this treatment and melatonin 
(5 mg/kg i.p. twice a week) against liver cirrhosis  
(Cho et  al. 2015). The authors observed a dose- and  
time-dependent relationship between melatonin and 
hepatic markers such as Alb, cytokeratin-18 (Ck18), 
CCAAT box enhancer-binding protein α (C/Ebpα), 
and hepatic nuclear factor-1α (Hnf1α). In addition, 
improvement of the immune response and a decrease of 
ALT, AST, and ammonia serum levels were also observed 
as a result of the addition of melatonin.

Conclusions

Melatonin’s role preventing graft rejection and 
improving organ transplantation results have been 
studied principally in animal models. Nowadays, there 
are not many studies in human models. Therefore, it 
is impossible to confirm the indoleamine benefits in 
our species, but the results observed in animals are 
encouraging. In addition, we observed that melatonin 
dose used in organ transplantation is between 1000- and 
3000-fold difference compared with melatonin dose for 
sleep and jet lag. Because of this difference of dosage, 
melatonin’s pathway differs. In organ transplantation, 
the indoleamine effects are observed to be produced due 
to its free radical scavenger properties, while its benefits 
in sleep promotion and jet lag prevention are mediated 

Downloaded from Bioscientifica.com at 10/11/2024 07:02:48PM
via free access

http://dx.doi.org/10.1530/JOE-16-0117


229:3 R140Review e esteban-zubero and others Melatonin and organ 
transplantation

http://joe.endocrinology-journals.org 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
DOI: 10.1530/JOE-16-0117

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

by melatonin action via indoleamine receptors (Laudon 
& Frydman-Marom 2014).

In conclusion, organ transplantation may be a useful 
therapeutic tool for the treatment of patients with end-
stage organ failure. Outcomes of these procedures have 
been improved recently by using new solutions to prevent 
graft rejection allowing for a great variety of organs to be 
transplanted. IRI occurs during organ transplantation 
and melatonin may be protective because of the 
findings summarized herein. Furthermore, melatonin 
is effective in not only reducing graft rejection, but it 
also improves organ function during the post-transplant 
period. Melatonin’s benefits are a result of its direct and 
indirect effects in cells. Moreover, melatonin is observed 
to increase the effectiveness of organ fluid preservation, 
which also plays a pivotal role in organ transplantation 
by reducing graft rejection. The observed results open 
a new advance for improvement of this important 
surgical technique. Additional studies would aid in 
defining additional mechanism to explain the beneficial 
actions of this endogenously produced and exogenously 
administered melatonin.
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